112 research outputs found

    Towards Robust Visual Localization in Challenging Conditions

    Get PDF
    Visual localization is a fundamental problem in computer vision, with a multitude of applications in robotics, augmented reality and structure-from-motion. The basic problem is to, based on one or more images, figure out the position and orientation of the camera which captured these images relative to some model of the environment. Current visual localization approaches typically work well when the images to be localized are captured under similar conditions compared to those captured during mapping. However, when the environment exhibits large changes in visual appearance, due to e.g. variations in weather, seasons, day-night or viewpoint, the traditional pipelines break down. The reason is that the local image features used are based on low-level pixel-intensity information, which is not invariant to these transformations: when the environment changes, this will cause a different set of keypoints to be detected, and their descriptors will be different, making the long-term visual localization problem a challenging one. In this thesis, five papers are included, which present work towards solving the problem of long-term visual localization. Two of the articles present ideas for how semantic information may be included to aid in the localization process: one approach relies only on the semantic information for visual localization, and the other shows how the semantics can be used to detect outlier feature correspondences. The third paper considers how the output from a monocular depth-estimation network can be utilized to extract features that are less sensitive to viewpoint changes. The fourth article is a benchmark paper, where we present three new benchmark datasets aimed at evaluating localization algorithms in the context of long-term visual localization. Lastly, the fifth article considers how to perform convolutions on spherical imagery, which in the future might be applied to learning local image features for the localization problem

    Towards Robust Visual Localization in Challenging Conditions

    Get PDF
    Visual localization is a fundamental problem in computer vision, with a multitude of applications in robotics, augmented reality and structure-from-motion. The basic problem is to, based on one or more images, figure out the position and orientation of the camera which captured these images relative to some model of the environment. Current visual localization approaches typically work well when the images to be localized are captured under similar conditions compared to those captured during mapping. However, when the environment exhibits large changes in visual appearance, due to e.g. variations in weather, seasons, day-night or viewpoint, the traditional pipelines break down. The reason is that the local image features used are based on low-level pixel-intensity information, which is not invariant to these transformations: when the environment changes, this will cause a different set of keypoints to be detected, and their descriptors will be different, making the long-term visual localization problem a challenging one. In this thesis, four papers are included, which present work towards solving the problem of long-term visual localization. Three of the articles present ideas for how semantic information may be included to aid in the localization process: one approach relies only on the semantic information for visual localization, another shows how the semantics can be used to detect outlier feature correspondences, while the third presents a sequential localization algorithm which relies on the consistency of the reprojection of a semantic model, instead of traditional features. The final article is a benchmark paper, where we present three new benchmark datasets aimed at evaluating localization algorithms in the context of long-term visual localization

    Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions

    Get PDF
    Visual localization enables autonomous vehicles to navigate in their surroundings and augmented reality applications to link virtual to real worlds. Practical visual localization approaches need to be robust to a wide variety of viewing condition, including day-night changes, as well as weather and seasonal variations, while providing highly accurate 6 degree-of-freedom (6DOF) camera pose estimates. In this paper, we introduce the first benchmark datasets specifically designed for analyzing the impact of such factors on visual localization. Using carefully created ground truth poses for query images taken under a wide variety of conditions, we evaluate the impact of various factors on 6DOF camera pose estimation accuracy through extensive experiments with state-of-the-art localization approaches. Based on our results, we draw conclusions about the difficulty of different conditions, showing that long-term localization is far from solved, and propose promising avenues for future work, including sequence-based localization approaches and the need for better local features. Our benchmark is available at visuallocalization.net.Comment: Accepted to CVPR 2018 as a spotligh

    Fine-Grained Segmentation Networks: Self-Supervised Segmentation for Improved Long-Term Visual Localization

    Get PDF
    Long-term visual localization is the problem of estimating the camera pose of a given query image in a scene whose appearance changes over time. It is an important problem in practice, for example, encountered in autonomous driving. In order to gain robustness to such changes, long-term localization approaches often use segmantic segmentations as an invariant scene representation, as the semantic meaning of each scene part should not be affected by seasonal and other changes. However, these representations are typically not very discriminative due to the limited number of available classes. In this paper, we propose a new neural network, the Fine-Grained Segmentation Network (FGSN), that can be used to provide image segmentations with a larger number of labels and can be trained in a self-supervised fashion. In addition, we show how FGSNs can be trained to output consistent labels across seasonal changes. We demonstrate through extensive experiments that integrating the fine-grained segmentations produced by our FGSNs into existing localization algorithms leads to substantial improvements in localization performance

    Estimated lifetime risk of venous thromboembolism in men and women in a Danish nationwide cohort: impact of competing risk of death

    Get PDF
    Incidence of venous thromboembolism (VTE) risk varies by age and sex. Some studies have reported overall higher risk in men, especially when VTEs triggered by female reproductive factors are excluded. However, higher mortality rates in men may have led to overestimation of lifetime VTE risk in men compared with women. Therefore, we estimated the lifetime risk of VTE in men and women in a Danish, nationwide cohort, taking into account the competing risk of death. Within the population of Denmark (> 5 million persons), all first-time VTEs occurring in 1995–2016 were identified from the Danish National Patient Registry covering all Danish hospitals. The cumulative incidences of VTE were estimated in men and women with age as timescale, taking into account the competing risk of death. Estimated lifetime risk was defined as cumulative incidence at age 100. In a simulation study, we excluded the proportion of female cases that could be attributed to reproductive risk factors and re-estimated the cumulative incidence. We identified 123,543 incident VTEs. The cumulative incidence of VTE was 1.9% in women and 1.3% in men at age 50, 4.3% in women and 4.4% in men at age 70, and 9.3% in women and 8.1% in men at age 100. After accounting for VTEs attributed to reproductive factors, the corresponding incidences in women were 1.2% at age 50, 3.2% at age 70, and 8.2% at age 100. In conclusion, the estimated lifetime risk of VTE was slightly higher in women than in men when accounting for competing risk of death. Our simulation study suggested that reproductive risk factors contribute modestly to the estimated lifetime VTE risk in women

    Long-Term Visual Localization Revisited

    Get PDF
    Visual localization enables autonomous vehicles to navigate in their surroundings and augmented reality applications to link virtual to real worlds. Practical visual localization approaches need to be robust to a wide variety of viewing conditions, including day-night changes, as well as weather and seasonal variations, while providing highly accurate six degree-of-freedom (6DOF) camera pose estimates. In this paper, we extend three publicly available datasets containing images captured under a wide variety of viewing conditions, but lacking camera pose information, with ground truth pose information, making evaluation of the impact of various factors on 6DOF camera pose estimation accuracy possible. We also discuss the performance of state-of-the-art localization approaches on these datasets. Additionally, we release around half of the poses for all conditions, and keep the remaining half private as a test set, in the hopes that this will stimulate research on long-term visual localization, learned local image features, and related research areas. Our datasets are available at visuallocalization.net, where we are also hosting a benchmarking server for automatic evaluation of results on the test set. The presented state-of-the-art results are to a large degree based on submissions to our server

    Long-Term Visual Localization Revisited

    Get PDF
    Visual localization enables autonomous vehicles to navigate in their surroundings and augmented reality applications to link virtual to real worlds. Practical visual localization approaches need to be robust to a wide variety of viewing conditions, including day-night changes, as well as weather and seasonal variations, while providing highly accurate six degree-of-freedom (6DOF) camera pose estimates. In this paper, we extend three publicly available datasets containing images captured under a wide variety of viewing conditions, but lacking camera pose information, with ground truth pose information, making evaluation of the impact of various factors on 6DOF camera pose estimation accuracy possible. We also discuss the performance of state-of-the-art localization approaches on these datasets. Additionally, we release around half of the poses for all conditions, and keep the remaining half private as a test set, in the hopes that this will stimulate research on long-term visual localization, learned local image features, and related research areas. Our datasets are available at visuallocalization.net, where we are also hosting a benchmarking server for automatic evaluation of results on the test set. The presented state-of-the-art results are to a large degree based on submissions to our server
    • …
    corecore